GABA spillover from single inhibitory axons suppresses low-frequency excitatory transmission at the cerebellar glomerulus.

نویسندگان

  • S J Mitchell
  • R A Silver
چکیده

GABA type B receptors (GABA(B)-Rs) are present on excitatory terminals throughout the CNS, but surprisingly little is known about their role in modulating neurotransmission under physiological conditions. We have investigated activation of GABA(B)-Rs on excitatory terminals within the cerebellar glomerulus, a structure where glutamatergic excitatory and GABAergic inhibitory terminals are in close apposition and make axodendritic synapses onto granule cells. Application of the GABA(B)-R agonist baclofen depressed evoked mossy fiber EPSCs by 54% at 1 Hz. The amplitude of miniature EPSCs recorded in tetrodotoxin was unchanged in the presence of baclofen, but the frequency was significantly reduced, indicating a purely presynaptic action of baclofen under our recording conditions. At physiological temperature (37 degrees C) presynaptic GABA(B)-Rs were not tonically activated by spontaneous GABA release from Golgi cells, which fire at approximately 8 Hz in slices at this temperature. However, tonic activation could be induced by blocking GABA uptake or by lowering temperature. GABA(B)-Rs were activated at physiological temperature when Golgi cell firing was increased above the basal level by stimulating a single inhibitory Golgi cell input at 50 Hz, suppressing the mossy fiber-evoked EPSC by 24% at 1 Hz. Furthermore, glutamate release was selectively inhibited at low-frequency mossy fiber inputs (<10 Hz) during Golgi cell stimulation. Our findings suggest that GABA spillover in the glomerulus modulates sensory input to the cerebellar cortex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Golgi Cell-Mediated Activation of Postsynaptic GABAB Receptors Induces Disinhibition of the Golgi Cell-Granule Cell Synapse in Rat Cerebellum

In the cerebellar glomerulus, GABAergic synapses formed by Golgi cells regulate excitatory transmission from mossy fibers to granule cells through feed-forward and feedback mechanisms. In acute cerebellar slices, we found that stimulating Golgi cell axons with a train of 10 impulses at 100 Hz transiently inhibited both the phasic and the tonic components of inhibitory responses recorded in gran...

متن کامل

Spillover-Mediated Transmission at Inhibitory Synapses Promoted by High Affinity α6 Subunit GABAA Receptors and Glomerular Geometry

synapses. Spillover of transmitter introduces a divergence of information flow superimposed on that produced by divergence in the wiring of synaptic connections. In the case of glutamate, it may also have significant implications for our understanding of the mechanisms Although a modulation of excitatory transmission by Summary GABA spillover has been observed in the hippocampus (Isaacson et al...

متن کامل

Spillover-mediated transmission at inhibitory synapses promoted by high affinity alpha6 subunit GABA(A) receptors and glomerular geometry.

Divergence and convergence of synaptic connections make a crucial contribution to the information processing capacity of the brain. Until recently, it was thought that transmitter released at a synapse affected only a specific postsynaptic cell. We show here that spillover of inhibitory transmitter at the Golgi to granule cell synapse produces significant cross-talk to non-postsynaptic cells, w...

متن کامل

Synaptic transmission: Spillover in the spotlight

In the mammalian brain, excitatory and inhibitory neurotransmission are mediated by the transmitters glutamate and γ-aminobutyric acid (GABA), respectively. Fast signaling between neurons occurs at specialized synaptic contacts formed between the axons of presynaptic cells and the soma or dendrites of postsynaptic target neurons. The narrow width of the synaptic cleft (~50 nm) ensures that tran...

متن کامل

Maintenance of High-Frequency Transmission at Purkinje to Cerebellar Nuclear Synapses by Spillover from Boutons with Multiple Release Sites

Cerebellar Purkinje neurons maintain high firing rates but their synaptic terminals depress only moderately, raising the question of how vesicle depletion is minimized. To identify mechanisms that limit synaptic depression, we evoked 100 Hz trains of GABAergic inhibitory postsynaptic currents (IPSCs) in cerebellar nuclear neurons by stimulating Purkinje axons in mouse brain slices. The paired-p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 20 23  شماره 

صفحات  -

تاریخ انتشار 2000